Higher Technology Institute $10^{\text {th }}$ of Ramadan City Mechanical Eng. Department

Electromagnetic Waves (MTE100) (2016-2017) Summer Course

Sheet 2

(1) Determine the volume V of a region defined in a cylindrical coordinate system as $1 m \leq r \leq 2 m, 0 \leq \phi \leq \frac{\pi}{3}$ rad, and $0 \leq z \leq 1 m$ by integration. Check your result without performing the integration.

$$
\left[V=\frac{\pi}{2} m^{3}\right]
$$

2 Determine the area S of a surface in a spherical coordinate system as $r=2 \mathrm{~m}$ and $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{3} \quad \mathrm{rad}$.

$$
\left[A=5.205 \mathrm{~m}^{2}\right]
$$

3 Use the spherical coordinate system to find the area of the strip $\alpha \leq \theta \leq \beta$ on the spherical shell of $r=a$ show this strip by sketching. What result when $\alpha=0$ and $\beta=\pi$?

$$
\left[\begin{array}{c}
A=2 \pi a^{2}[\cos \alpha-\cos \beta] \\
A=4 \pi a^{2}
\end{array}\right]
$$

4 Use the cylindrical coordinate system to find the area of the curved surface of a right circular cylinder where: $r=2 m, h=5 m$ and $30^{\circ} \leq \phi \leq 120^{\circ}$ as shown in fig

$\left[A=5 \pi m^{2}\right]$

5 Given the point $P\left(5 \mathrm{~m}, 60^{\circ}, 2 \mathrm{~m}\right)$ and $Q\left(2 \mathrm{~m}, 110^{\circ},-1 \mathrm{~m}\right)$
(a) Find the distance $R_{P Q}$
(b) Give a unit vector in Cartesian coordinates at P that is directed towards Q
(c) Give a unit vector in cylindrical coordinates at P that is directed towards Q

$$
\begin{aligned}
& R_{P Q}=5.014 \mathrm{~m} \\
& \bar{a}_{P Q}=-0.635 q-0.489_{a} a-0.598_{z} a \\
& \text { At point } \left.P, \bar{a}_{P Q_{c y l}}=-0.741^{-} \rho+0.306{ }^{-} q_{\phi}-0.598_{z}{ }_{z}\right]
\end{aligned}
$$

6
(a) Find \bar{a}_{x} in the spherical components at $P(3,-4,5)$
(b) Find \bar{a}_{θ} in Cartesian components at P

$$
\left[\begin{array}{c}
\bar{a}_{x}=0.424 \bar{a}_{r}+0.424 \bar{a}_{\theta}+0.8 \bar{q}_{\phi} \\
\bar{a}_{\theta}=0.424 \bar{a}_{x}-0.565 q-0.707
\end{array}\right]
$$

7 A closed surface is defined in spherical coordinates by $3 \leq r \leq 5$,
$0.1 \pi \leq \theta \leq 0.3 \pi, 1.2 \pi \leq \phi \leq 1.6 \pi$
(a) Find the volume enclosed.
(b) Find the total surface area.

$$
\left[\begin{array}{ccccc}
V=14.9 & 1 & 2
\end{array}\right]
$$

8 Transform $\bar{A}=y \bar{a}_{x}+x \bar{a}_{y}+\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} \bar{a}_{z}$ to cylindrical coordinates.

$$
\left[\bar{A}_{c y l}=\rho \sin 2 \phi \bar{a}_{\rho}+\rho \cos 2 \phi \bar{a}_{\phi}+\rho \cos ^{2} \phi \bar{a}_{z}\right]
$$

